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Abstract

The purpose of the project was to collect knowledge in parameter estimation, in order to be able to
solve real-life parameter estimation problems from chemical engineering. A suitable method to solve
these problems has been found and a computer program has been developed.

By means of the program several inverse problems for parameter estimation have been solved. For the
solution, not only the parameters and their range of probability were identified, but it was also deter-
mined to what extent the information available from the experiments led to the possible identification
of the parameters.

A summary of results is given in this report and subjects for further research are identified.
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1. INTRODUCTION

A primary task in the modeling and understanding of chemical reaction systems is the identification of
unknown parameters. These parameters are e.g. reaction constants in the kinetic equations or a priori
unknown conditions. Given a description (a model) of the process under consideration, the unknown
parameters can be identified when sufficient and suitable experimental data about the course of the
reaction are available. Then, if the model is correct, the description with the parameters determined
may account for the data and predict future behaviour.

Determining the model parameters is called the “inverse problem” of reaction kinetics, contrary to
simulation which is the “direct problem”. In simulations the course of the reaction is predicted given
the reaction equations together with known parameters which describe the initial concentrations and
circumstantial conditions.

It often occurs that the inverse problem — in which the parameters have to be determined — is
ill-posed. This means that several choices for the parameters allow a model for which the simulation
agrees with the given experimental data. In addition to this basic uncertainty, in practice two other
sources for inaccuracies have to be taken into account:

o In the solution of the inverse problem, a number of direct problems have to be solved. For solving
these direct problems complicated reaction systems must be integrated by numerical techniques.
This process should be efficient and it should not introduce significant additional errors. This
requires software implementations of advanced integration techniques.

o The (approximate) solution of a model should “fit” a set of data that is perturbed by experi-
mental errors. The accuracy of these data determines the accuracy to which the parameters can
be computed and it should determine the precision (the tolerances) used to control the induced
optimisation problem.

For deriving the parameters that determine the qualitative and quantitative behaviour of chemical
reactions, beside the model we need sufficient measurements as well as an appropriate mathematical
method. Computers are indispensable for performing the simulations of the complex dynamical sys-
tems (describing the reactions of many chemical components) and also for fitting the simulations to the
measurements. Existing numerical software is still not capable or sufficiently reliable for solving the
inverse problem in all generality. Even good numerical mathematical analysis is lacking for providing
a sound basis for truly generally applicable software.

A possible approach for treating the problem of parameter identification is to combine a modern
simulation technique with a nonlinear least-squares method for data fitting. As this data fitting
would require global nonlinear minimisation, such a direct combination usually does not yet result in
a sufficiently successful method in practice.

Improvements can be expected by introducing the possibility of user interaction with the computer
computation. This enables the exploitation of human expertise for the efficient solution of the problem.
A prerequisite for such an approach is a suitable user interface, including sufficient means of ‘scientific
visualisation’. Of course — with or without human interaction — statistical information obtained
from the fitting problem (e.g. information about singular values and singular vectors) should be
fed back into the simulation to discriminate the predictions resulting from the simulation. Further
feedback might be given by the user in the form of suggestions during the computation to restrict the
feasible parameter space, to drop certain measurements or to provide possible new measurements.

Here we report on the result of a pilot research project “Parameter Identification in Reaction
Kinetics”, in which advanced numerical techniques have been investigated for the solution of the
inverse problem. An experimental implementation has been constructed (in Fortran) for one suc-
cessful method which was used for several test problems and for some real-life problems. Further,
the applicability has been greatly enhanced by incorporating symbolic manipulation techniques for

1For the elaboration of this idea, in Summer 1992 an application was made for STW support.



deriving the Jacobian matrices for the mathematical equations that describe the reaction equations.
By modern computer graphics techniques, now available on the new SGI work stations, we are able
to get additional insight into possibilities for global optimisation by inspecting the relevance of a
problem’s parameters through a cunning visualisation of their behaviour. These parts of the project
are discussed in the following sections.

2. OBJECTIVES

The objectives of the research project were:

o To get insight into the availability of software aimed at chemical process modeling and the solu-
tion of chemical inverse problems, characterised by its user-friendliness and the communication

language, the employed numerical techniques, and other (system-independent) properties that
determine its usefulness for the chemical researcher.

A comprehensive recent survey of available software for process simulation can be found in
[4, 11]. For further useful information in this direction we refer to [28, 15].

o Toinvestigate the numerical techniques that can be used as part of the solution process for inverse
problems, in particular solution methods for (stiff) ordinary differential equations or differential-
algebraic equations, solution methods for nonlinear least-squares problems and regularisation
methods for ill-posed problems. Here we refer to [2, 7, 8, 10, 12].

e To implement pilot software for the solution of inverse problems.

This software is briefly described in Section 4.

e To carry out case studies for a selection of typical inverse problems from practice.

This experience is summarised in Section 5.

These activities were to be carried out in continuous interaction with representatives of the industrial
project partner. In addition, several other relevant papers [33, 8, 19, 27] were studied and discussed
in a small working group together with the industrial project partner.

3. DESCRIPTION OF THE PROBLEM

The mathematical formulation of the problem is the following. The physical model is described by a
system of n differential (or differential algebraic equations?)

d
e _ 3.1
a7 f(t,y,p), (3.1a)

and a corresponding set of initial conditions
y(to,p) = y°(p). (3.1b)

Here y is the n-vector of unknown functions, and p represents an m-vector of parameters. In the
process considered, p has the value p*, but p* is unknown. Some of the components of the vector
y(t, p) can be measured for different values of ¢, but these measurements are perturbed by experimental
errors. It is assumed that the form of f is known, together with some statistical properties of the
experimental errors. The problem is to find an estimate p for the vector p*.

With y; (1 < i < N) we denote the observed value for the c¢;-th component of y(t;, p*). Thus,
we have a set of observations {y;} and for all ¢ the index 7 identifies an observation y; for the c;-th

2In order to simplify the notation we restrict ourselves here to differential equations. Without essential differences
the same treatment can be generalised to differential algebraic equations. In fact, also the software developed can be
used for DAEs.



component of the system (1 < ¢; < n) at time ¢;, tg < t; < ty. Corresponding with these data, for a
given p we can compute a set of theoretical values {y., (¢, p)}¥;.

If we assume a normal distribution for the measurement errors, and if we assume the classical linear
statistics theory to hold, then the problem can be formulated as a least squares problem: define the
N-vector of defects

Y(p) = (YCi(tiap) _yi)i=1,...,1v » (3.2)

and introduce the sum of squares of the defects

i=N
S@) = 1Y@z = > (veltip)-w)". (3.3)

Using an integration procedure to solve the system (3.1), we can solve the problem by minimising
S(p) over the space of all possible p. Of course, the number of data N should be at least equal to the
number of unknown parameters m. In principle, any good minimisation procedure could be used to
solve this problem. However, a good global minimisation procedure for this problem is hard to find.

Moreover, even if we assume that the function S(p) is the best one to minimise and that the
minimum is unique, the question remains as how badly conditioned the problem is, i.e. how small
a perturbation in some values of y; will cause how large a variation in the minimising vector p. In
relation to this question it is clear that not only an estimate for p* should be found, but also an
estimate for its reliability.

In this report we assume that the experimental errors are statistically independent and that they
have a Gaussian distribution with zero mean value. Further, we assume that linear statistics can be
applied indeed, and that the measurements can be scaled such that they have equal variance o?. Thus
the covariance matrix of the vector of experimental errors 7 is

E(m’) = o°I, (3.4)
and the probability density of 7 is given by

p(n) = (2m0)N/Zexp(—|n[*1/(20%)). (3.5)

3.1. The dependence of Y(p) on p.

The solution y of the system (3.1) can be considered as a function of ¢ as well as a function of p. We
consider the difference between two adjacent solutions y;(t, p) and y»(¢, p+6p) of (3.1), both starting
with the same initial condition y1(to, p) = ya(to, p + ép) = y°(p) . For a small ép and differentiable
functions f, the difference between both solutions is, to first order, described by

%(yz—yl) = a—fﬁé%m(w—mﬂi(t’g;’—p)épﬂ“-w (3.6)
With

FY (t,y,p) = %‘ﬁ , (3.7)
an n X n-matrix, and

FP(t,y,p) = Qf—(%g’—p) ; (3.8)

an n X m-matrix, both matrices in (3.6) depend on p and y;, but not on ép or (y2 — y1).
To know the dependence of the defects (3.2) on p, it is expedient to know also the functions

YP = %ﬁ;—l’—) . (3.9)



These m vector functions are determined by the differential equation (3.6), which — together with
(3.1) — can be written as the system

d
a =0
(3.10a)
%YP = FY.YP+FP,
with the initial conditions

y(to) = y’p),

0 (3.10b)
YP(1,) oy’(p)

op

The second part in this system (3.10) essentially is a system of n x m differential equations. If we
solve this system together with the first system, (3.1), we are able to compute

0
A = —V. (t; . .
(p) (6pyc.( “p)>i=1,~~-,N (3.11)
This is an N X m-matrix describing the dependence of the defects (3.2) on p.

3.2. Minimising S(p)
Consider the function S(p) defined by equation (3.3). The value P that minimises S(p) is an estimate
of the true value p*. In (3.3) y(¢,p) is nonlinear function of p. Therefore we assume that we may
linearise this dependence on p in a sufficiently small neighbourhood of p, and that p* lies in this
neighbourhood.

Suppose that p is a trial vector in the neighbourhood around p and that ép is the required correction:
p + ép = Pp. The residual vector Y(p) is approximated by a linear function of this parameter

Y(p) = Y(p-6p) ~ Y(p)-A(p)6p, (3.12)
and for the residual function
S(p) = S(p+6p) = Y(p+6p)l?
~ |IY(p)+ A(p) ép|? (3.13)

Il

1Y (p)||? + 26pTATY (p) + 6pTATASp.

The approximating function to S(p) is a quadratic function of §p and it has a minimum at the point
given by the normal equations

AT(p)A(p)ép = -AT(p)Y(p). (3.14)

If the matrix AT(p)A(p) is non-singular, this equation determines §p from Y (p).

In the linear case, p + 6p so determined would be the required solution P, and the minimum value
of S(p) attained would be

S() = IY(p)*-épTATAbp. (3.15)

In the general, nonlinear case S(p + ép) will not be the minimal value of S(p) and the process of
approximating P can be iterated.



The process described has the same order of convergence as quasi-linearisation. This process is
often called quadratically convergent. In fact, however, the process only converges quadratically if the
experimental errors vanish. Otherwise we have first order convergence.

The linear system (3.14) is the starting point for a Gauss-Newton method. The disadvantage of
this method is well-known: it fails if the matrix A(p) is (nearly) singular. Therefore, the above
Gauss-Newton method is modified and a Levenberg-Marquardt method [26] is used instead. Here the
step vector is given by

(AT(p)A(p) + A1) 6p = —AT(p)Y(p), (3.16)

where ) is some regularising parameter (a nonnegative scalar).
For A = 0 the vector ép is equal to the vector defined by equation (3.14). If A tends to infinity the
direction of §p tends to the “steepest descent” direction and the length of ép tends to zero,

ép = —AT(p)Y(p)/X.

The problem is now to find a proper choice for A. In our implementation, equation (3.16) sometimes
will be solved for different values of A. In order to avoid superfluous calculations, and also in order to
keep track of the singular values, the singular value decomposition of A(p) is used:

A(p) = UP)Z(p)VTi(p), (3.17)
where U(p) is a unitary N X m-matrix, V(p) is a unitary m X m-matrix, and the m x m-matrix X(p)
is diagonal with on the main diagonal the singular values: ¥(p) = diag(o1, --,0m), 01 2 02 > -+ >
0m > 0. Substituting (3.17) into (3.16) yields the step vector ép by
-1
sp = —V(p)(ZXp)+ ) Z(p)UT(p)Y(p). (3.18)

After a successful iteration step, i.e. after a computation of ép such that S(p+6p) < S(p), the vector
p+6p is taken as a new approximation in a new iteration step. This makes a robust and efficient local
minimisation procedure. The iteration process is stopped if the change in S(p) is less than an a priori
given tolerance. Of course, this tolerance is made dependent on the accuracy of the observations in

Y(p).

3.3. Statistics

Let P be the final estimate of p so that S(p) > S(p) for all p. We again assume that linearisation is
allowed in a sufficiently large neighbourhood of p.

For the perturbations 7; of the observed values y;, we assume an N(0,0?) distribution3, and so it
follows from (3.14) that the estimated value p will also be normally distributed. We define ép = p—p~*,

hence the expectation of ép will be zero when p = p. We are also interested in the covariance matrix
of 8p, i.e. the expected value of 6pép”:

E(6pspT) = E((ATA)"'ATYYTA (ATA)™Y)
= (ATA) TATE(YYT)A (ATA)™!
= o?(ATA) L.

By equation (3.14) ép is a linear function of Y. Hence its probability density is also Gaussian and
given by

exp(—6pT AT Aép/20?)

\/(2mo)™ det((ATA))

P(ép)

3For a distribution of the error in the experiments with different variances, in Section 3.6 we introduce possible
scalings.



From (3.15) follows immediately
IY®+6p)II° = S(p)+6pTATAép. (3.19)

Now it is clear that ||Y]||?/c?, 6pTATAép/o? and S(p)/o? have a xZ-distribution with N, m and
N — m degrees of freedom respectively. An estimate of o? is given by

s = S(p)/(N —m) = [[Y®)|I*/(N —m). (3.20)

The confidence region at level « is the ellipsoidal region

TAT < __m
6pAA6p_N

5(p) Fa(m, N —m), (3.21)

where F,(m, N —m) is the a-point of the F-distribution with m and N —m degrees of freedom. The
principal axes of the ellipsoidal region are given by the eigenvectors of ATA and the length of the
axes is 1/4/X;, with ); the eigenvalue of the corresponding eigenvector.

The confidence limits for each estimate, supposing that the other estimates are correct, are

ﬁi + 5pl )
where

6pi = | 3 S)Fa/(ATA):.

Other confidence limits for the individual estimates (independently) are

i-)_i + 6p:1

where

S ST TA)!
601 = 3 SPIFa (ATA)G.

The geometrical interpretation is that the tangent planes to the ellipsoid with normals in the direction
i are at a distance §p; from the centre of the ellipsoid and that the ith axis cuts the ellipsoid at points
6p; from the centre. Clearly ép; < ép;.

3.4. Integration of the differential equations

The system of differential (algebraic) equations that is to be solved at each iteration step of the
minimisation process, is the large system (3.10). This large system can be considered as a family of
m + 1 smaller systems: the original system (3.1):

d
Syv=t
dt”
and m additional systems (see (3.10a)):
d :
4y =fp, tiyyp, ,i=1--m

Here yp, = dy/0p;, fp;, = 0f/0p;, and fy = 9f/dy is the Jacobian matrix of the system (3.1). The
Jacobian matrix of the large system (3.10) has the special structure

fy o ... .- 0
f)fp1 fy 0 tet 0
J=|: o .o ) (3.22)
: : . 0
fypm 0 ctt 0 fy



where fyp, = o%*f/ O0yop;. In this Jacobian matrix we recognise a typical one-way coupling of the
system. It follows that all the eigenvalues of the large Jacobian matrix coincide with those of the
small Jacobian matrix fy. Thus, the stability behaviour of the large system is the same as that of the
small system and no additional stiffness is introduced.

In order to solve the system of differential (algebraic) equations a routine based on the BDF formulas
has been constructed. In the usual way this routine is provided with step length and order control.
Of course, this control is applied only for the small subsystem (3.1) because the behaviour of the large
system is determined mainly by its eigenvalue distribution and the final accuracy of the minimisation
is only dependent on the accuracy in the computation of (3.3).

In the implementation we take full advantage of the one-way coupling in (3.22). In each step of the
integration process, the equation (3.1) is solved as an independent subsystem. When this part of the
integration has been successfully completed, the m other systems in (3.10) are solved directly (e.g.
using the same LU-decomposition in the solution of the implicit equations).

Another interesting feature of the BDF formulas used in the solution of (3.10) is the natural poly-
nomial interpolation that is implied with the integration scheme. This interpolation is used when
experimental data are available at ¢;-points that are not step points for the BDF formula. As a conse-

quence, the selection of the integration step points can be completely independent of the observation
times {t;}.

3.5. Implementation of the solution method

The approach in this project for solving the inverse problem has been to investigate the combination
of a robust method for integrating (3.1) and a nonlinear minimisation technique for fitting the solution
to the data. Based on the theory for linear statistics for the problem stated in (3.3), we apply least-
squares approzimation, which means that we want to find vectors p which minimise the residual
function:

Sp) =Ym@)TY(p) = Y|}, (3.23)

where ||..||, denotes the £-norm. In fact, taking into account different possible weights for the different
experiments, we — more generally — introduce a weighted norm and minimise:

Sp) =Y@)Twy(p) =Y}, (3.24)

where W is a diagonal matrix of positive weights. By these weights we can take into account data
about the accuracy of the individual measurements. For handling measurements with a fixed relative
accuracy, a weights matrix W based on the magnitudes of the components of y can easily be generated
automatically.

For the solution of the modified nonlinear least squares problem we use the Levenberg-Marquardt
method described in section 3.2. As the minimisation procedure essentially finds local minima, we do
not assume that a generally applicable method will result from such a direct combination of an IVP
integrator and the local nonlinear minimisation routine. However, the present approach gives a good
start and we expect that this method will enable us to analyse typical difficulties. The approach will
allow us to eventually derive extensions to solve also the global problem. We foresee that the present
technique will be part of a more comprehensive method, in which a different algorithm will take care
of global minimisation and the present technique will deal with local problems.

In the project much attention was paid to the influence of scaling either (z) the parameters p, or
(77) the dependent variables y, or (iii) the vector of residuals. The next subsection is devoted to the
formulation of the problem when all these possibilities are available.



3.6. Scaling components of the vectors 'y, p, and Y
As a simple and yet sufficient means to deal with the sensitiveness of the problem or the solution
method to different magnitudes in the elements of the vectors p, y, or Y(p), we have introduced
facilities to separately scale these 3 vectors.
By scaling the components of the vectors y and p in (3.1) and (3.24) as:
~ ~ \T

y=(c181, -, @nfn) (3.25a)

and

p= (81, Bmbm) (3.25b)

we obtain the differential equations:

0 556, 8) = 1t o583 Yimy » (05571
or:

d_ . . F = =

Vit B) = fi(t, 5, D).

This yields the, scaled, initial-value problem:

S3p) = {63,9) 526)
¥(to,d) = F°(P)
When elaborating, we find the following expression for the residual function:
Se) = YRy
(3.27)

N
o Y~ 2
Z wj (C\tcj ycj (t(])) p) - yj)
j=1

in the case that W is a diagonal matrix with diagonal elements w;. One possibility for W is:

1
2
o,

w;, =

This means that the scaling of y, which has its influence in the integration of the IVP, is annihilated
by the scaling of the residual for the minimisation problem.

Experimenting with these scaling facilities showed in the first place, that an explicit, user-provided
scaling for p had little influence. It obviously should not influence the solution found, but also
the numerical behaviour of the nonlinear minimisation routine was hardly influenced. (This shows
robustness of the minimisation procedure.)

As was to be expected, the scaling of y and Y (p) both influenced the solution process, as it modified
the function to be minimised, and consequently it changed the solution p. It was clear that this facility
was indispensable for defining the very function that is to be minimised. Experience was obtained
that in many cases a relative accuracy is given for measurements. For this we could use an automatic
scaling facility.

In the final phase of the project the scaling facility (3.25) was exploited less frequently. As will be
described in section 4.1, we have developed a new tool for defining the problem on a more elementary
level than in the Fortran routines that describe the equations (3.1) (viz. in the Maple [13, 14] lan-
guage). This tool provided a much easier way of introducing some scalings. The initially implemented
facility for scaling, by (3.25) in the package of Fortran subroutines, was maintained for possible future
efficiency improvements.

10



4. DESCRIPTION OF THE PARAMETER IDENTIFICATION SOFTWARE

The parameter identification software for solving inverse problems consists of two parts. The actual
solver, called PEIDE, is implemented as a set of Fortran 77 subroutines. It is activated when its topmost
subroutine (SUBROUTINE PEIDE) is called, and it solves the parameter identification problem that is
defined by a set of four Fortran subroutines. The second part is a Maple program, called A_ENGINE,
that can be used for generating the definition of the problem in Fortran. A_ENGINE delivers the four
Fortran subroutines that are required for PEIDE, when a mathematical definition of the parameter
identification problem is given as input to the Maple program.

We provide four ways for employing this software, depending on whether the user is willing to
provide his or her own software for generating Jacobian matrices, monitoring and input and output
processing, with user access to all possibilities for setting options. These four levels of access are:

1. the most computer-assisted level. The user only has to provide a mathematical model of the
chemical reactions, and the data file(s) with measurements. The mathematical model is given as
a system of differential (algebraic) equations and the corresponding initial values, as functions of
the unknown parameters, in the Maple [13, 14] language®. Input for a complete run of PEIDE is
generated by the Maple program A _ENGINE which uses advanced algebraic formula manipulation.
The user can solve a parameter identification problem completely. The generated set of four
Fortran subroutines which define the problem can be re-used in successive calls (possibly with
different measurements) on the common technical level. Examples of problems solved are given
in Section 5.

2. the common technical level. The user has to provide a definition of the parameter identi-
fication problem in the form of a set of four subroutines (DERIV, CYSTRT, JADFDY, JADFDP),
and data files containing measurements and possibly scale factors. The subroutines DERIV,
CYSTRT, JADFDY and JADFDP are required for defining the right-hand side function f(t,y, p)
of the initial-value problem, initialising the starting vector y°(p), and obtaining the Jacobian
matrices FY (¢,y,p) and FP (¢,y,p). These subroutines can be provided by an earlier use of
the program on the most computer-assisted level.

A driver program PIIRK is available which calls PEIDE in a standard way, using all available
standard facilities for reading the measurements and printing the results.

A lot of flexibility is left to the user, since many of the options for PEIDE are input-driven and are
available through the standard data-reading subroutine. Therefore, for users employing many
of the available facilities, this can be the usual working level.

3. the advanced technical level. As for the previous, higher level the user must provide a
definition of the parameter identification problem through the set of four subroutines (DERIV,
CYSTRT, JADFDY, JADFDP). In addition, the user also provides a main program calling PEIDE.
Several tasks like reading input, monitoring the solver, processing the results, approximating
the required Jacobian matrices, and providing scaling can be carried out by additional library
subroutines that provide these facilities in a number of standard ways.

4. the most technical level. On the lowest level are provided the bare subroutines, PEIDE
and its auxiliary library subroutines. Among other tasks, routines are available for solving an
IVP, solving a nonlinear minimisation problem, reading input files or writing results. Further
routines are available for subproblems such as the solution of a linear system, interpolation and
the construction of a singular-value decomposition. Some linear algebra subproblems are solved
by LAPACK subroutines (see [1]).

The parameter identification problem must be defined by the four subroutines DERIV, CYSTRT,
JADFDY and JADFDP. On this level, in addition, all other input parameters of PEIDE must be set,

4An example can be found in Section 4.1.
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such as those for reading the measurements and the possible scalings. In a user-provided main
program the user calls PEIDE and proceeds with the results obtained through PEIDE’s output
parameters. The ordinary user probably will never call PEIDE this way.

In the next two subsections we only describe the first two (highest-level) modes of use. A description
of the other levels of use is not intended here as it would unavoidably be a long and very technical
description.

4.1. The A ENGINE generator

The highest level for using the solver is through the A_ENGINE program which generates Fortran source
code for solving the inverse problem. In addition, it generates a INTRX [22] input file for type-set output
of the mathematical equations, derivatives and Jacobians.

The A_ENGINE process, as represented by Figure 1 (on page 13), consists of the following parts:

1. Let $PROBLEM (a formal parameter name) be the name of a problem. In the example below,
$PROBLEM = barnes. Then the file $PROBLEM.model should contain a Maple definition of a
problem (3.1).

2. With $PROBLEM.model as input file, A_ENGINE calls mapleV [13, 14]. At present, mapleV is the
most recent available version of Maple. This call generates two new files: $PROBLEM.f and
aproblem.tex.

3. The file $PROBLEM. f contains the four Fortran subroutines DERIV, CYSTRT, JADFDY and
JADFDP. This is the required set of subroutines that define a parameter identification problem in
Fortran. Together with the available driver program, and data files containing the measurements,
this file contains all that is actually needed by the Fortran solver (PEIDE).

4. The file aproblem.tex is immediately included in a prepared file a_peide.tex and can be used
as a WTEX input file for generating a type-set report on the results of this A_ENGINE call.

As an example of the use of A_ ENGINE, we treat here Barnes’s problem described in section 5.1.1
(on page 23). This means that, in the description above, we take $PROBLEM = barnes.
The required input file barnes.model reads:

\# \begin{verbatim}

# First we fix the number of equations (noq),
# and the number of parameters (nop).

noq:= 2;
nop:= 3;

# We describe the differential equations by:

# variables Y

# parameters P

# derivatives dY/dp = £(Y,p)
YY := [seq( Y[m], m=1..noq )];
PP := [seq( plm], m=1..nop )];
FF := [seq( f[m], m=1..noq )];
x:= Y[1]
y:= Y[2] ;
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User-provided User-provided
problem definition: data file:

I
|
| | $PROBLEM.model $PROBLEM.data
l

Library module
(main program):

Source code PLIRK l

generator: Problem-defining
A ENGINE modules:

DERIV
CYSTRT
JADFDY
JADFDP
SPECIF

Set of
library modules

PEIDE |

(solver and \

facilities)

Output IXTEX | Output

source file: ’ text file: |
aproblem.tex | $PROBLEM.uita|

FIGURE 1. Model definition and I/O with A_ENGINE
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ki = pl1] ;

k2 = pl2] ;

k3 = pl3] ;

fl1] := k1l * x - k2 * x *xy ;

f[2] :=k2 * x *y - k3 *xy ;

ymax[1] := 1.0;

ymax[2] := 1.0;

ystart[1] := 1.0;

ystart[2] := 0.3;
# required symbols at the end:
# noq, nop,
# Y,p,1,
# YY,PP,FF
#

ymax, ystart,

\# \end{verbatim}

Note, that this file contains comment lines (lines preceded by #) that allow it to be easily included in
a IATEX file.

The Fortran source file barnes. f, generated by A_ENGINE, reads:

C begin of maples FORTRAN
C variable noq = N in PEIDE
C variable nop = M in PEIDE

subroutine CYSTRT(p,Y,YMAX,noq,nop)
implicit double precision(t)
C External to main program
integer nog,nop
double precision p(nop),Y(noq),YMAX(noq)
In general, CYSTRT might use components of Y beyond Y(noq)
for initialising dY/dP, viz. ((Y(5%noq+J*noq+I),I=1,noq),J=1,nop)
Therefore:
double precision p(nop),Y(21300),YMAX(noq)
YMAX(1) = 0.1D1
YMAX(2) = 0.1D1
Y(1) = 0.1D1
Y(2) = 0.3D0
Y(13) =
Y(14) =
Y(15) =
Y(16) =
Y(17) =
Y(18) =
return
C end CYSTRT
end

aaoaaQ

O OO O OO
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subroutine SPECIF(POST,RIN,IOUT,ROUT)

implicit double precision(t)
Called in generic main program PIIRK, intended for executing a
problem-SPECIFic prelude (POST=1),
interlude (POST=2), postlude (POST=3).

Parameters:
integer POST,I0OUT(10)
double precision RIN(6),ROUT(4)

Declarations:
integer nop, noq, NOBS, ININBP, NCOL, NROW, ITMAX
integer BP(0:20),C0BS(200) ,SCMODE
logical GOON
double precision TOBS(0:200),0BS(200),p(70),
1 SCALEP(70),SCALEY(50),SCLRES(220)
double precision LAMBDO, FISHAP
String variables for title:
character TITLE*40
integer INX
double precision LOG
Commons for initialising in subroutine DAATA:
common /XDAAT1/ nop,noq,NOBS,ININBP,NCOL,NROW,ITMAX,
1  SCMODE,COBS,BP,GOON
common /XDAAT2/ TOBS,0BS,p,SCALEP,SCALEY,SCLRES,
1 LAMBDO,FISHAP
common /XDAAT3/ TITLE

intrinsic LOG
sk ok ke ok ke ok sk ok sk o sk ke ok ke ok ok o sk ok s ok k s ok ok e ok ok ok ok ok ok o sk ok e ok e ok ke e sk ks sk sk ok sk ok sk ok sk skok ok sk ko C

Replace these lines in the generated .f file by whatever is
needed here for the SPECIFic problem.

return

end SPECIF

end

logical function DERIV(p,Y,X,DF,noq,nop)
implicit double precision(t)
External to main program
integer noq,nop
double precision X, p(nop),Y(noq),DF(noq)
Declaration:
double precision dexp
intrinsic dexp
DF(1) = p(L)*Y(1)-p(2)*Y(1)*Y(2)
DF(2) = p(2)*Y(1)*Y(2)-p(3)*Y(2)
DERIV .true.
return
end DERIV
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end

logical function JADFDY(p,Y,X,FY,noq,nop)
implicit double precision(t)
C External to main program
integer noq,nop
C Note: column length of array FY set to maximum (see main program):
C double precision X, p(nop),Y(noq),FY(noqg,noq)
double precision X, p(nop),Y(noq),FY(50,n0q)
double precision dexp
intrinsic dexp
t1 = p(2)*Y(1)
t3 = p(2)*Y(2)
FY(1,2) = -t1

FY(2,1) = t3
FY(2,2) = t1-p(3)
FY(1,1) = p(1)-t3
JADFDY = .true.
return

C end JADFDY
end

logical function JADFDP(p,Y,X,FP,noq,nop)
implicit double precision(t)
C External to main program
integer nog,nop
C Note: column length of array FP set to maximum (see main program):
c double precision X,p(nop),Y(noq),FP(nog,nop)
double precision X,p(nop),Y(noq),FP(50,nop)
C Declaration:
double precision dexp
intrinsic dexp
t1 = Y(1)*Y(2)
FP(1,2) = -t1

FP(2,1) =0
FP(2,3) = -Y(2)
FP(2,2) = t1
FP(1,3) = 0
FP(1,1) = Y(1)
JADFDP = .true.
return

C end JADFDP
end

C end of maples FORTRAN

The file aproblem. tex is intended as an include file for a complete IATEX input file. When processed
by IATEX, the part aproblem.tex results in the following text (which is obtained as part of a more
complete document that further consists of a title page, a copy of the Maple input file and possibly
more information about the particular problem):
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The equations are
DFy =p1Y1 —pY1Ye
DFy = pY1Ys — p3Ys
The Jacobian df /dy is

[ p1—pYa —pYi
p2Ys p2Y1 — p3

The Jacobian df /dp is

(Y, -y, 0
0 VY, -Y

The maximal values for y are

YMAX, =1.0

YMAX, =1.0
The starting values for y are

Y1 =1.0

Y, =0.3
The starting values for dy/dp are

[ 000 }

0 0O

Here only the possible non-zero derivatives of the initial conditions with respect to the param-
eters are mentioned.

4.2. The PIIRK program

The second level of use of the software for solving parameter identification problems from reaction
kinetics is by directly running a Fortran program, PIIRK. The PIIRK program is employed by providing
a set of Fortran 77 subroutines (DERIV, CYSTRT, JADFDY, JADFDP) that together define the problem.
PIIRK is a main program acting as a general driver program for PEIDE.

PIIRK makes a call to the subroutine PEIDE with all subroutine parameters correctly set. It arranges
that a data file containing measurements (and weights, if user-provided) is read and it calls a library
subroutine for printing results.

In Figure 2 (on page 18) we show the relationship between: the library modules, the user-provided
modules for defining a problem, and the input and output files.

A complete heading mentioning all parameters of PEIDE is:

subroutine PEIDE(N,M,NOBS,NBP,PAR,RES,INIBP,JTJINV,L1JT]J,
1 ITMAX,RIN,IOUT,ROUT,NCOL,NROW,INTOBS,INCOBS,INOBS,
2 YOUT,L1YOUT,SCMODE,SCALEP,SCALEY,SCLRES,IMONIT)

A detailed specification of these parameters, and in particular of the user-provided subroutines that
define parts of a parameter identification problem is available, but is not included in this report.
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User-provided

source file
$PROBLEM. f
containing

Fortran modules:
DERIV
CYSTRT
JADFDY
JADFDP
SPECIF

Library module

main program):
g

PIIRK

User-provided

data file:
$PROBLEM.data

User-provided

modules:
DERIV
CYSTRT

JADFDY
JADFDP

SPECIF

Set of
library modules

PEIDE

(solver and
facilities)

Output

text file:
$PROBLEM.uita

FIGURE 2. Problem definition and I/O with PEIDE
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For Barnes’s problem, that was used in the example of use of A_ENGINE in the previous section, the
only input still needed by the executing Fortran program (after the part barnes.f has been generated
by A_ENGINE), is the data file given in Figure 3.

BARNES - PROBLEM

3 2 20 0 0 24 0
0.0100 5.1800
0 0.0000
1 0.5000 1 1.1000
2 0.5000 2 0.3500
3 1.0000 1 1.3000
4 1.0000 2 0.4000
5 1.5000 1 1.1000
6 1.5000 2 0.5000
7 2.0000 1 0.9000
8 2.0000 2 0.5000
9 2.5000 1 0.7000
10 2.5000 2 0.4000
11 3.0000 1 0.5000
12 3.0000 2 0.3000
13 3.5000 1 0.6000
14 3.5000 2 0.2500
15 4.0000 1 0.7000
16 4.0000 2 0.2500
17 4.5000 1 0.8000
18 4.5000 2 0.3000
19 5.0000 1 1.0000
20 5.0000 2 0.3500
1.0D0
1.0D0
1.3D0
go

FIGURE 3. Data file for Barnes’s problem

The meaning of this input is:
first line: a title to identify the problem, that will appear in the output file,

second and third line: the following numbers:

m = number of parameters,

n = number of equations,

N = number of measurements,

NBP = number of break points,

a selector for the required scaling,

ITMAX = maximum number of iterations,

a selector for the preferred way of monitoring (choosing the required amount of intermediate
output),

Ao = initial value for the regularising parameter A of the Marguardt subroutine (see (3.16)),
the a—point of the F-distribution,
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next 21 lines: the measurements:
on each line (z,t;, COBS;, OBS;),

next three lines: an initial guess for the unknown parameters,
last line: the command go (nogo if only consistency checking of the input is required).

The standard output for Barnes’s problem, obtained when the library-provided driver program is
used, is (we suppress the repetition of the input file containing the measurements):

BARNES - PROBLEM

NUMBER OF EQUATIONS T2
NUMBER OF OBSERVATIONS: 20

MACHINE PRECISION :0.10E-13
RELATIVE LOCAL ERROR BOUND FOR INTEGRATION :0.10E-04
RELATIVE TOLERANCE FOR RESIDUE :0.10E-03
ABSOLUTE TOLERANCE FOR RESIDUE :0.10E-03
MAXIMUM NUMBER OF INTEGRATIONS TO PERFORM : 24

RELATIVE STARTING VALUE OF LAMBDA :0.10E-01
RELATIVE MINIMAL STEPLENGTH :0.10E-03

THERE ARE NO BREAK-POINTS

THE ALPHA-POINT OF THE F-DISTRIBUTION : 5.18

NORMAL TERMINATION OF THE PROCESS

LAST INTEGRATION WAS PERFORMED WITHOUT BREAK POINTS

EUCL. NORM OF THE LAST RESIDUAL VECTOR :0.4057437E+00
EUCL. NORM OF THE FIRST RESIDUAL VECTOR :0.4510949E+01

NUMBER OF INTEGRATIONS PERFORMED HE
LAST IMPROVEMENT OF THE EUCLIDEAN NORM :0.4916916E-05
CONDITION NUMBER OF J’*J :0.1338214E+02

LOCAL ERROR BOUND WAS EXCEEDED (MAXIM.) : O

PARAMETERS CONFIDENCE INTERVAL
0.8606433E+00 0.2003386E+00
0.2072371E+01 0.3537576E+00
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0.1815006E+01

0.3774078E+00

CORRELATION MATRIX

I\ J= 1
2 0.60091E+00
0.55704E+00 0.84167E+00

3

COVARIANCE MATRIX

I\ J= 1

0.25827E-02
2 0.27405E-02 0.80531E-02
3 0.27102E-02 0.72312E-02 0.91658E-02

1

THE LAST RESIDUAL VECTOR:

3

.36986E-02
.10424E-01
.19492E+00
.59471E-01
.99414E-01
.56654E-01
.54903E-01
.84500E-01
.25732E-01
.12932E+00
.17534E+00
.13877E+00
.88880E-01
.10720E+00
.54382E-01
.53247E-01
.59292E-01
.18446E-01
.16665E-01

column 1: OBS(I)
column 2: Y(c_I)
column 3: Y(c_I) - OBS(I)
column 4: sqrt(w_I) * OBS(I)
column 5: sqrt(w_I) * Y(c_I)
column 6: sqrt(w_I) * (Y(c_I) - OBS(I))
1 2
1 0.11000E+01 0.10963E+01 -
2 0.35000E+00 0.36042E+00 O
3 0.13000E+01 0.11051E+01 -
4 0.40000E+00 0.45947E+00 O
5 0.11000E+01 0.10006E+01 -
6 0.50000E+00 0.55665E+00 0
7 0.90000E+00 0.84510E+00 -
8 0.50000E+00 0.58450E+00 0O
9 0.70000E+00 0.72573E+00 O
10 0.40000E+00 0.52932E+00 0O
11  0.50000E+00 0.67534E+00 O
12 0.30000E+00 0.43877E+00 O
13 0.60000E+00 0.68888E+00 0
14 0.25000E+00 0.35720E+00 O
15 0.70000E+00 0.75438E+00 O
16 0.25000E+00 0.30325E+00 0O
17 0.80000E+00 0.85929E+00 O
18 0.30000E+00 0.28155E+00 -
19 0.10000E+01 0.98334E+00 -
20 0.35000E+00 0.29504E+00 -

--- Performance statistics:
8 calls of subroutine FUNCT

.54958E-01

eleReReReReReNeNelNeolNolNelNolNe oo lNo oo o]
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.11000E+01
.35000E+00
.13000E+01
.40000E+00
.11000E+01
.50000E+00
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.40000E+00
.50000E+00
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.60000E+00
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.7T0000E+00
.25000E+00
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.10963E+01
.36042E+00
.11051E+01
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.85929E+00
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.36986E-02
.10424E-01
.19492E+00
.59471E-01
.99414E-01
.56654E-01
.54903E-01
.84500E-01
.25732E-01
.12932E+00
.17534E+00
.13877E+00
.88880E-01
.10720E+00
.54382E-01
.53247E-01
.59292E-01
.18446E-01
.16665E-01
.54958E-01



7 calls of subroutine FUNCT (where SEC=.false.)
1 calls of subroutine MARQUR

887 calls of subroutine DERIV

422 calls of subroutine JADFDP

429 calls of subroutine JADFDY

446 calls of subroutine DGETRF.

THE CALCULATION IN PEIDE CONSUMED 0.65 SECONDS

5. SUBMITTED PROBLEMS

5.1. Small ezample problems

We first have successfully tested the PEIDE package on a set of small, partly artificial, test problems
(see Table 1). These problems are described in some detail in the Sections 5.1.1-5.1.7.

problem file number of description
params. | variables | observations
barnes.f 3 2 20 Barnes’s problem
gear.f 4 2 8 Gear’s problem
bellman.f 2 1 14 Bellman'’s problem
escep.f 3 2 23 ESCEP
small.f 1 1 4 param. in initial value
expfit.f 5 2 17 exponential fitting
enzym.f 4 2 27 enzyme effusion

TABLE 1. Example problems

For the problems run with very bad initial estimates of the parameters, the success of the solution
method may have depended on the setting of options of the software that were not explained in detail
in Section 4.2, like the tuning of the Marquardt parameter A and the choice of break points for the
system of differential equations. Such technical information is omitted here.
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5.1.1. Barnes’s problem
Barnes’s problem [20, 17]

A PL o444

4+B 2 ByB (5.12)
B & c.
The mathematical problem is given by the equations:
d -
dt P1Y1 — P2Y1Yy2
(5.1b)
dy -
dt P2Y1y2 — p3y2 .

For this problem the initial values were obtained from the initial concentrations in the reactions. The
initial values were:

vn(0) = 1, (0 = 03 (5.1¢)

A typical set of input data (files barnes.model and barnes.data, for both the model and the
measurements) was described in Section 4. For the call of PEIDE we used p(® = (1,1, 1.3)T as
starting values for the parameters. From the results obtained we mention only the final values of the
parameters p and the confidence interval for each of the parameters:

PARAMETERS CONFIDENCE INTERVAL
0.8606433E+00 0.2003386E+00
0.2072371E+01 0.3537576E+00
0.1815006E+01 0.3774078E+00

5.1.2. Gear’s problem
Gear’s problem [20, 17] apparently originated from the following set of chemical reactions:
&
A+ B E AB

(5.2a)
P2

—

AB+B ‘57 ABB

Taking for the concentrations [ABB] = y; and [AB] = yz, the mathematical problem is given by the
equations:

dy

4 - hw +p2y2(2 — y2 — 2y1)

(5.2b)
dyo _ dy;
& TP +p4(2—y2 =20 )(1 —y2 —y1) It

The initial values for y were:

v1(0) =025, y2(0) =05 (5.2¢)

For a submitted set of measurements the solver succeeded in finding a solution for p with a small
residual vector.
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5.1.3. Bellman’s problem

Bellman’s problem [20, 17] is derived from the chemical reaction:

9NO + 0y — 2NO,. (5.3a)
The mathematical problem is given by the equation:

dy; 2 2

— = P1(126.2—41)(91.9 — 1) — pays - (5.3b)
The initial value was:

y(1)=0 (5.3c)

For a submitted set of measurements the solver succeeded in finding a solution for p with a small
residual vector.

5.1.4. The ESCEP problem

The ESCEP problem [20, 17 is derived from the following set of chemical reactions originating from
biochemistry:

ki

—

E+S k C (5.4a)

c B pip

The variables of the mathematical problem are the concentrations [C] and [S]. The mathematical
problem is given by the equations:

% = —(1-y2)y1 + kv
(5.4b)
W o (-~ O Ra)
and the initial values were:
y1(0) =1, y2(0)=0 (5.4c)

For a submitted set of measurements the solver succeeded in finding a solution for p with a small
residual vector.

5.1.5. A small test problem

The following small test problem was chosen in order to test the performance when the initial value
for y depends on p. The mathematical problem is given by the equation:

dy _

- = 0, (5.5a)
with initial condition:

y1(0)=p1. (5.5b)

For the call of PEIDE we used p(10) = 0.5 as starting values for the parameter, and the observations
chosen for this test problem were:
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1(1.0) = 1.0, 51(2.0) = 1.0, 51 (3.0) = 2.0, 31 (4.0) = 2.0.

From the results obtained we mention only the final value of the parameter p and the confidence
interval for this value:

PARAMETERS CONFIDENCE INTERVAL

0.1500000E+01 0.1685724E+01

It shows that the solver correctly delivered the best solution p; = 1.5, although the errors in the data
are such that no accuracy can be expected.

5.1.6. The exponential fitting problem

As for the previous, small test problem, the exponential fitting problem [20, 17] was chosen in order

to test the performance when the initial value for y depends on p. The problem was derived from a
function

yi(t) = ps+preP?’ +pyet, (5.6a)

which is known to satisfy the equations:

dy _
(5.6b)
dys _
T 1 + (p4 + P2)y2 + Pap2ps -
The initial conditions were:
y1(0) = p1+p3+ps
(5.6c)
y2(0) = pip2 + paps.

For the call of PEIDE we used p(®) = (=5, -10,5, 0.5, 0.5)T as starting values for the parameters.
In agreement with [17] we took as observations values of y;(t) for t at:

0.02(0.02)0.1,0.2(0.2)1, 2, 3,4, 5(5)20
for the parameters:
p* =(-3,-20,2,-1,1)T.

From the results obtained we mention only the final values of the parameters p and the confidence
interval for each of the parameters:

PARAMETERS CONFIDENCE INTERVAL
-.2999995E+01 0.1503825E-03
-.1999901E+02 0.1335448E-02
0.2000049E+01 0.5382094E-04
-.1000026E+01 0.6881261E-04
0.9999989E+00 0.2185958E-04

This shows that, for the given starting values for p, the solver correctly recovers the values of the
parameters used for generating the data.
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5.1.7. The enzyme effusion problem

The enzyme effusion problem [16, 17] is involved with fitting a model of enzyme effusion into the blood
after a heart infarct. The mathematical problem is given by the equations:

dy P4 q (ln(t) — P2 )2
- = — + —(y2 — + im+ ———=exp|—05| ———
7 Pyt (Y2 = y1) + P1Yiim 1o P -
(5.7a)
dys 2
a v (yl yz)-
The initial conditions were:
y1(0.1) = y2(0.1) = yiim - (5.7b)

The quantities v1, vs, ¢, Yiim are known variables of the problem for which the values per occurrence
of the problem (i.e. per patient) are given.

For a run of PEIDE with 27 measurements from a real-life situation (see [17]) we used p(®) =
(0.16,2.6,0.3, 0.32)T as starting values for the parameters.

From the results obtained we mention only the final values of the parameters p and the confidence
interval for each of the parameters:

PARAMETERS CONFIDENCE INTERVAL
0.2725351E+00 0.7859745E-01
0.2653203E+01 0.1180816E+00
0.3661048E+00 0.9868416E-01
0.2081668E+00 0.2901210E+00

These results roughly agree with those given in [17].

5.2. Case problems
5.2.1. A real-life problem from reaction kinetics

The problem treated in this section was taken from the Master’s thesis by K.K. Hong [21]. It arises
from the reactions occurring in a reactor vessel containing a couple of reagents and a catalyst. Reagents
occur both as liquids and gas. Measurements are obtained from those concentrations in the process
that appeared to be measurable, which was the case for only a few of the concentrations.

The reactions are:

2y + Y1 — Y3
2ys + Y3 — ya
Ys + Y4 — Y5 + Y (5.8a)
2ys + Y6 — Y1
Yo — 2y

The mathematical problem is (cf.[21]):
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an dys

dt = _TIQC/Wa E = TS_vl/‘/lv
d d
B = —rege/ Vet (wn +wa)/ Ve, 2= r-rage/Vi,
(5.8b)
d d
%:i = (Tl - 7'2)gc/vl — T3, % = T4gc/Vl )
d d
% = ng(:/‘/f —T3, _'C:I;TS = 2(T5 - Ty —T2— T4)7
where
rno= ki(nivd - Kiys), |lwi = ku(q(peot/(RT) = ys/q2) — y2),
ro = ko(ysyd — Koya), |w2 = kiowi(g(peot/(RT)) —y2),
r3 = ka(ysya — Kays¥s), | @@ = quo+aips +bip2,
(5.8¢c)
rg = ka(ysy? — Kayr), | @ = qo0+azps +bop2,
rs = ks(ye — K5¥8), @ = quo+bipior,
v = 13/(q/Vy+1/Ve),

in which g10, ¢20, @1, a2, b1, ba, prot, R, T are physical constants or quantities that are kept constant for
all experiments, and g., p2, ps, Vy, Vs are quantities which are kept constant per experiment. Parame-
ters are

P = (k17k23"'7k51K11K27'"aK57k117k12)T' (58d)

For this problem the initial values were obtained from the initial concentrations in the reactions.
The non-zero initial values were:

y1(0) =2907.0, y5(0) = g2ps/(RT) (5.8e)

Computations were carried out with the sets of measurements listed in an appendix of [21]. The
measured concentrations were for [y3 + ys), [v4] and [y7], and measurements had been obtained in
experiments with different values of g. (the amount of catalyst), and p, and p5 (the partial pressures
of y, and ys in the gas volume).

In order to have the mathematical equations in the right shape for solving the problem by PEIDE,
the variable yg was replaced by 26 = y3 + ys.

We have carried out several solver runs while modifying starting values of the parameters, scaling
of components of parameters, variables and residues, and other available options. Our experiments
gave a clear indication that the chosen model was unsuitable for the data, as the solution for the
resulting parameter values did never come close to the experimental data, and additional statistical
information showed that the obtained parameter values could not bear accuracy.

For the first runs with the hong problem, the output also indicated the linear dependencies that
existed (and should exist) between several of the not measured concentrations. Taking:

8 22 Vi

@eVi+V,’

the obvious dependencies are:
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d d d 2d
dyi  dys | dys 2 dys

@ tatw Tea 0 and

dys .dys ,dyr _
@ P P =Y

(5.9a)

(5.9b)

Additional runs were made with a simplified problem obtained by eliminating the known linear
dependencies in the variables. Although this had a positive effect on the execution time consumed by
PEIDE, the effect on the accuracy of the parameters (shown, e.g., by the values given under CONFIDENCE
INTERVAL) was not significant. Several runs have been made, in order to find good starting values for
the vector of parameters p. The main conclusion was that the model did not fit the measurements,

and that this was sufficiently indicated by the diagnostics issued by PEIDE.

5.2.2. A submitted real-life problem of a chemical reaction

A real-life problem submitted by the industrial project partner was treated employing the highest level
of use of A_ENGINE together with PEIDE. The mathematical problem is derived from chemical reactions,
and in experiments with different (but constant) temperatures all concentrations were measured a

couple of times.
The reactions are:

™
29 + Y — Yz + w

T2
ys + Y5 — Y T+ Ya

T3
Y6 + ys — yr + u

T4
Yy — Y8 + Y5

5
Yys + Y5 — Y7

The mathematical description is:

dy: dys
il T3 — 271, G = TeT s,
dy»  _ | dye _ . _,
dt 1, dt 2 3
d d
% = T1 -T2, % = T3—T4+7Ts5,
dy, dys
— = ro — = = - 75,
d T +Tr2—T3, dt T4 5
where
= kiyiye, ry = kayr,
re = koysys, s = ksYsys -
rs = k3y4y6 3

(5.10a)

(5.10b)

(5.10c)

For this problem the initial values, which were obtained from the initial concentrations in the reactions,

were different per experiment. Both experiments with (non-zero) initial values:

28



1(0) = 100.0, y2(0) = 150.0, y5(0) = 100.0 (5.10d)

and

y(0) = (100.0, 142.89, 4.34,0,123.41,3.49,5.55,9.13) T (5.10e)

were made.
In the formulas given below we have introduced parameters p; according to k; = exp(p;), to force the

parameters k; to be positive and to obtain relative instead of absolute accuracy. The use of A_.ENGINE
resulted in the following partial IATEX output file:

The equations are
DF{ = eP?*Y,Yg — 2.0eP'Y Y,
DFy = —eP*Y1 Y,
DF3 = eP'Y1Y, — eP2Y3Y5
DF, = e 1Y, + eP?Y3Ys — eP?Y,Y5
DFys = eP4Y; — eP2Y5Ys — eP?2Y3Y;
DFg = eP?Y3Ys — eP?Y,Ys
DF; = eP?*Y, Yy — eP* Y7 + eP?Y; Y3
DFg = eP*Y7; — eP3Y5Yy

The Jacobian df /dy is

[ —2.0e”1Y, —2.0e”Y; 0 eP3Ys 0 er3Y, 0 0
—eP1Y, —ePlY; 0 0 0 0 0 0
ePYy eP1Y; —eP2Yj 0 —eP2Yy 0 0 0
eP1Y, eP'Y; eP2Yys —eP3Yy eP2Y, —eP3Y)y 0 0
0 0 —eP?2Yy 0 —eP3Yg — eP?2Y; 0 ePr  —eP3Y;
0 0 eP2Y; —eP3Y; eP2Y; —eP3Yy 0 0
0 0 0 eP3Ys ePsYy eP3Yy —eP4 eP3Ys
L 0 0 0 0 —eP3Yy 0 ePs  —eP3Y; |

The Jacobian df /dp is

[ —2.0eP Y, Y, 0 ePY, Y 0 0 ]
—eP Y Y, 0 0 0 0
e Y, —eP2Y3Y; 0 0 0
e 1Y, eP2Y3Ys —eP3Y,Ys 0 0
0 —eP2Y3Ys 0 ePrY; —ePeY;Ys
0 €p2Y3Y5 —€p3Y4Y6 0 0
0 0 eP?Y,Ys —ePiY;  eP3YiYy
L 0 0 0 ePtY; —ePsYiYs i

The maximal values for y are

YMAX, = 200.0

YMAX 5 = 200.0
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YMAX3 = 200.0
YMAX4 = 200.0

YMAXs = 200.0

YMAXg = 200.0
YMAX 7 = 200.0
YMAXg = 200.0

The starting values for y are

Y: = 100.0
Yy = 150.0
Y3 =0
Yyi=0
Ys = 100.0
Ys =0
Y; =0
Ys =0

The starting values for dy/dp are

0

o= I e I en B o i @ I e B e e
(e R e B en i en B en B wn)
[N el s R e R o R o B o R an)
DO OO0 O OO
DO OO OO OO

0

Here only the possible non-zero derivatives of the initial conditions with respect to the param-
eters are mentioned.

Several runs of PEIDE were made with different starts for p and with different sets of measurements.
For the following measurements:

0 0.0000

1 25.0000 1 32.3600
2 25.0000 2 109.1800
3  25.0000 3 6.4600
4  25.0000 4 61.1800
5 25.0000 5 67.5800
6  25.0000 6 20.3500
7  25.0000 7 12.0700
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8 25.0000 8 1.9400
9 56.0000 1 24.4100
10  56.0000 2 94.9800
11 56.0000 3 3.3400
12 56.0000 4 72.2500
13 56.0000 5 51.9300
14  56.0000 6 17.2300
15  56.0000 7 30.8400
16  56.0000 8 3.6100
17 96.0000 1 13.3600
18  96.0000 2 78.8300
19  96.0000 3 6.7100
20  96.0000 4 79.9300
21  96.0000 5 42.6800
22  96.0000 6 8.7600
23 96.0000 7 48.5700
24  96.0000 8 7.1300

typical results obtained were:

A -92 /01 - PROBLEM - run la

STARTING VALUES OF THE PARAMETERS
-.7505600E+01
.5684000E+01
.6502300E+01
.1098600E+01
.0000000E+00

+ 4+

NUMBER OF EQUATIONS : 8
NUMBER OF OBSERVATIONS: 24

MACHINE PRECISION :0.10E-13
RELATIVE LOCAL ERROR BOUND FOR INTEGRATION :0.10E-04
RELATIVE TOLERANCE FOR RESIDUE :0.10E-03
ABSOLUTE TOLERANCE FOR RESIDUE :0.10E-03
MAXIMUM NUMBER OF INTEGRATIONS TO PERFORM : 50

RELATIVE STARTING VALUE OF LAMBDA :0.10E+00
RELATIVE MINIMAL STEPLENGTH :0.10E-03

THERE ARE NO BREAK-POINTS
THE ALPHA-POINT OF THE F-DISTRIBUTION : 4.17

*%*%x MONMAR called in MARQUR before exit.
Singular values and vectors :

1 2 3 4 5
0.51486E+02 0.29348E+02 0.14948E+02 0.12693E+02 0.18703E-02
1 2 3 4 5
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oW N

o1 O OO0

NORMAL

.95424E+00
.15086E+00
.20443E+00
.11154E+00
.11147E+00 0.

o O

TERMINATION

.26423E+00 0.13737E+00

.27091E-01 -.91869E-05

.21531E+00 -.46738E+00 0.84406E+00 -.34554E-04
.91797E+00 0.32804E+00 -.89062E-01 -.21983E-05
.14349E+00 0.57246E+00 0.37350E+00 -.70694E+00
14341E+00 -.57216E+00 -.37336E+00 -.70728E+00
OF THE PROCESS

LAST INTEGRATION WAS PERFORMED WITHOUT BREAK POINTS

EUCL. NORM OF THE LAST RESIDUAL VECTOR :0.6974293E+01
EUCL. NORM OF THE FIRST RESIDUAL VECTOR :0.6455052E+02

NUMBER OF INTEGRATIONS PERFORMED H
LAST IMPROVEMENT OF THE EUCLIDEAN NORM :0.7022356E-04
CONDITION NUMBER OF J’*J :0.7577978E+09

LOCAL ERROR BOUND WAS EXCEEDED (MAXIM.) : O

PARAMETERS

o

.8430087E+01
.6231400E+01
.7398311E+01
.1632019E+01

-.4346094E+00

CORRELATION MATRIX

I\ J= 1

2

3
4
5

0
0
0

.19828E+00

.156903E-01 -.
.21186E+00 O.
.21179E+00 O.

COVARIANCE MATRIX

I\ J= 1

O WN -

0

O O O |

.13765E-02

.89669E-03 0.
.36882E-04 -.
.47537E+01 O.
.47545E+01 O.

CONFIDENCE INTERVAL

0.1694125E+00
0.5565611E+00
0.2854291E+00
0.2761478E+04
0.2762815E+04

29902E+00
24255E+00 0.30116E-01
24250E+00 0.30052E-01 0.10000E+01

14857E-01

22783E-02 0.39074E-02

17879E+02 0.11385E+01 0.36574E+06

17884E+02 0.11366E+01 0.36592E+06 0.36610E+06
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THE LAST RESIDUAL VECTOR:

column 1: OBS(I)

column 2: Y(c_I)

column 3: Y(c_I) - OBS(I)

column 4: sqrt(w_I) * 0BS(I)

column 5: sqrt(w_I) * Y(c_I)

column 6: sqrt(w_I) * (Y(c_I) - OBS(I))

1 2 3 4 5 6

1 0.32360E+02 0.32272E+02 -.88229E-01 0.32360E+02 0.32272E+02 -.88229E-01
2 0.10918E+04 0.11126E+03 0.20832E+01 0.10918E+03 0.11126E+02 0.20832E+00
3 0.64600E+01 0.68587E+01 0.39867E+00 0.64600E+01 0.68587E+01 0.39867E+00
4 0.61180E+03 0.60870E+02 -.31044E+00 0.61180E+02 0.60870E+01 -.31044E-01
5 0.67580E+02 0.69034E+02 0.14543E+01 0.67580E+02 0.69034E+02 0.14543E+01
6 0.20350E+02 0.22133E+02 0.17827E+01 0.20350E+02 0.22133E+02 0.17827E+01
7 0.12070E+02 0.88330E+01 -.32370E+01 0.12070E+02 0.88330E+01 -.32370E+01
8 0.19400E+01 0.91245E+00 -.10275E+01 0.19400E+01 0.91245E+00 -.10275E+01
9 0.24410E+02 0.22248E+02 -.21623E+01 0.24410E+02 0.22248E+02 -.21623E+01
10 0.94980E+03 0.93313E+02 -.16672E+01 0.94980E+02 0.93313E+01 -.16672E+00
11 0.33400E+01 0.47042E+01 0.13642E+01 0.33400E+01 0.47042E+01 0.13642E+01
12 0.72250E+03 0.73048E+02 0.79807E+00 0.72250E+02 0.73048E+01 0.79807E-01
13 0.51930E+02 0.52297E+02 0.36670E+00 0.51930E+02 0.52297E+02 0.36670E+00
14 0.17230E+02 0.16361E+02 —-.86914E+00 0.17230E+02 0.16361E+02 -.86914E+00
15 0.30840E+02 0.31342E+02 0.50244E+00 0.30840E+02 0.31342E+02 0.50244E+00
16 0.36100E+01 0.42797E+01 0.66968E+00 0.36100E+01 0.42797E+01 0.66968E+00
17 0.13360E+02 0.16340E+02 0.29799E+01 0.13360E+02 0.16340E+02 0.29799E+01
18 0.78830E+03 0.78947E+02 0.11711E+00 0.78830E+02 0.78947E+01 0.11711E-01
19 0.67100E+01 0.37352E+01 -.29748E+01 0.67100E+01 0.37352E+01 -.29748E+01
20 0.79930E+03 0.79925E+02 -.51390E-02 0.79930E+02 0.79925E+01 -.51390E-03
21 0.42680E+02 0.41301E+02 -.13794E+01 0.42680E+02 0.41301E+02 -.13794E+01
22  0.87600E+01 0.88720E+01 0.11197E+00 0.87600E+01 0.88720E+01 0.11197E+00
23 0.48570E+02 0.49827E+02 0.12574E+01 0.48570E+02 0.49827E+02 0.12574E+01
24 0.71300E+01 0.86183E+01 0.14883E+01 0.71300E+01 0.86183E+01 0.14883E+01
--- Performance statistics:
8 calls of subroutine FUNCT
7 calls of subroutine FUNCT (where SEC=.false.)
1 calls of subroutine MARQUR
827 calls of subroutine DERIV
405 calls of subroutine JADFDP
412 calls of subroutine JADFDY
412 calls of subroutine DGETRF.
THE CALCULATION IN PEIDE CONSUMED 2.62 SECONDS

The results in this case clearly indicate that parameters p; and ps cannot be determined. However,
as the singular values and the 4'* and 5'" elements of the singular vectors indicate, it should be
possible with these data to determine either py + ps or ps — ps. With the current state of the software
it is now fairly easy to modify the model as provided to A ENGINE in a file $PROBLEM.model. In the
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original model we replaced p; = Inks and ps = Inks by p} and pj such that py + p; = Inks and
py — pt = Inks. Below, we give a summary of the new results, containing the singular values and
singular vectors, the new results for the parameters and their confidence intervals, and the covariance
matrix.

A -92 /01 - PROBLEM - run 1la

STARTING VALUES OF THE PARAMETERS
-.7505600E+01
.5684000E+01
.6502300E+01
.5493000E+00
.5493000E+00

+ 4+

Singular values and vectors :

1 2 3 4 5
0.52190E+02 0.30129E+02 0.19634E+02 0.13132E+02 0.26460E-02

1 2 3 4 5
1 0.93406E+00 -.32116E+00 0.13885E+00 -.71446E-01 -.12997E-04
2 0.15303E+00 0.20486E+00 -.59125E-01 0.96494E+00 -.48890E-04
3 0.21257E+00 0.85104E+00 0.44212E+00 -.18730E+00 -.31096E-05
4 -.79050E-04 -.95985E-04 0.21377E-03 -.46541E-05 -.10000E+01
5 -.24274E+00 -.36142E+00 0.88417E+00 0.16940E+00 0.24210E-03

EUCL. NORM OF THE LAST RESIDUAL VECTOR :0.6974294E+01

CONDITION NUMBER OF J’*J :0.3890497E+09
PARAMETERS CONFIDENCE INTERVAL
-.8430087E+01 0.1694105E+00

-.6231393E+01 0.5566160E+00

-.7398308E+01 0.2854298E+00

0.5481539E+00 0.2761179E+04

0.9833143E+00 0.7568458E+00

COVARIANCE MATRIX

0.13765E-02

-.89677E-03 0.14860E-01

.36879E-04 -.22786E-02 0.39074E-02

.47524E+01 0.17878E+02 0.11371E+01 0.36566E+06

.40067E-03 -.24924E-02 0.93378E-03 -.88526E+02 0.27473E-01

These results show that beside pi, p2, p3, the new parameter p; could also be determined with some
accuracy.
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6. RELATED WORK

During the project we have been cooperating with CWI’s department of Interactive Systems (IS) with
the aim of exploiting modern visualisation technology for discovering new ways to solve the described
class of problems. The work done in this direction has been described in a paper by Robert van Liere
[23] from which we give the following summary.

The purpose of scientific visualisation is to enhance existing scientific and numerical methods by
increasing the scientist’s ability to see data and comprehend the results of computations. A typical
solution process might consist of four phases, a modeling phase when a mathematical model is devel-
oped describing some physical phenomenon, and a subsequent cycle of three phases, the simulation,
data mapping, and presentation phases, respectively. In these three phases a simulation of the physical
reality is made given the model and some initialisation. The data from this simulation computation
are collected and used for the generation of geometric primitives, and the results are made available for
visual presentation in many ways in order to illuminate the characteristics of the numerical solution
space. The user can gain much insight by steering the visual presentations when changing perspective
and angle, size and highlighting of an image of one set of data as well as by modifying the data in a
new cycle of the three phases with different initial values provided to the model.

The paper [23] gives a description of Barnes’s problem (section 5.1.1) for which a complete image of
the 3-D solution space for the parameter p has been computed, which can subsequently be inspected
interactively in a large variety of ways. By looking at isosurfaces of the residue function S(p) the user
can interactively navigate through this space, examine the areas where local minima occur and call
for a better resolution of the data set. This visualisation is a convenient tool for identifying parameter
ranges that could be of special interest, and this information can immediately be fed back into the
simulation. Similarly, the experimenter can also identify areas in the solution space that are unlikely
to become of interest for further generation of experimental data.

It is expected that this synergy of two research disciplines provides a category of powerful tools for
scientists and engineers in which modeling and simulation are tightly linked with interactive computer
graphics.

7. CONCLUSION

In this report we have described the development and implementation of software for solving pa-
rameter identification problems as they are originating in e.g. (chemical) reaction kinetics. These
problems consist of a system of ordinary differential equations (ODEs) or differential-algebraic equa-
tions (DAEs) containing parameters (such as reaction constants) to be determined when experimental
values (measurements) are available that should fit the solution of the system of ODEs.

The implementation was derived from an existing Algol 60 code that was documented in [17]. The
present implementation, called PEIDE, consists of a set of Fortran subroutines joining advanced numer-
ical mathematics methods for integrating the systems of ODEs and solving the nonlinear minimisation
problem. The solver is provided with many options for modifying its behaviour regarding convergence,
which allows much space for further experimentation to find a fruitful balance of the available options
for solving a class of problems that is as wide as possible.

For testing purposes the performance of the present implementation has been compared with the
performance of the older Algol 60 implementation for a set of small testing problems (see [17]) with
satisfactory result, as is described in section 5.1.

The real merits of the implementation have been shown by two series of experiments with measure-
ments from practical situations, viz. the Hong problem (results are described in section 5.2.1) and
the A-92 problem (results are described in section 5.2.2). With both problems several solver runs
have been carried out while modifying starting values of the parameters, scaling of components of
parameters, variables and residues, and other available options.

For the Hong problem, our experiments with the PEIDE solver sufficiently demonstrated that the
chosen model was unsuitable to fit the data. The solution for the computed parameter values was
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never a good approximation of the experimental data, and the additional statistical information clearly
indicated the indeterminacy of the obtained parameters.

The computations with the A-92 problem showed that some of the unknown parameters could quite
well be determined and that these parameters yield a solution (of the ODEs) that pretty well fits the
measurements. Moreover, it was clear from the additional statistical information for the undetermined
parameters that some linear combination of these parameters should also be determinable. This linear
combination and its value (ps — ps in section 5.2.2) could subsequently be determined after a minor
change of the model.

The results described in this report show that the present software package PEIDE together with the
accompanying Maple program for transforming mathematically defined models into Fortran subrou-
tines is a powerful tool for solving parameter identification problems. It deserves a deeper investigation
of its possibilities and a further development by applying it to a wider class of models for real-life
problems.
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